

COURSE STRUCTURE AND SYLLABUS

For

B. TECH ELECTRICAL AND ELECTRONICS ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

I Year – I SEMESTER

Sl.	Course	Subjects	L	Т	Р	Credi
No	Components					ts
1	HSMC	Communicative English	3	0	0	3
2	BSC	Mathematics-I (Calculus and Differential Equations)	3	0	0	3
3	BSC	Mathematics-II (Linear Algebra and Numerical Methods)	3	0	0	3
4	ESC	Programming for Problem Solving Using C	3	0	0	3
5	ESC	Engineering Drawing & Design	1	0	4	3
6	HSMC	Communicative English Lab	0	0	3	1.5
7	BSC	Electrical Engineering Workshop	0	1	3	1.5
8	ESC	Programming for Problem Solving Using C Lab	0	0	3	1.5
	1	Total Credits]	19.5

Sl.	Course	Subjects	L	Т	Р	Credi
No	Components					ts
1	BSC	Mathematics-III	3	0	0	3
		(Vector Calculus, Transforms and PDE)				
2	BSC	Applied Physics	3	0	0	3
3	ESC	Data Structures Through C	3	0	0	3
4	ESC	Electrical Circuit Analysis -I	3	0	0	3
5	ESC	Basic Civil and Mechanical Engineering	3	0	0	3
6	BSC	Applied Physics Lab	0	0	3	1.5
7	ESC	Basic Civil and Mechanical Engineering Lab	0	0	3	1.5
8	ESC	Data Structures through C Lab	0	0	3	1.5
9	Mandatory Course	Constitution of India	2	0	0	0
		Total Credits		1	19.5	

I Year I Semester		L	Т	P	С
1 Year I Semester		3	0	0	3
	COMMUNICATIVE ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- ➤ Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

Unit 1:

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

Unit 2:

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "**Infotech English**", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

ALANDAR STATES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

1. "Infotech English", Maruthi Publications. (Detailed)

2."The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. 5th edition, Routledge, 2017.
- 2. Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational, Feb 2013.
- 4. Hewings, Martin. *Cambridge Academic English (B2)*. Cambridge University Press, Student Edition, 2012.

I Year I Semester		L	Т	Р	С				
		3	0	0	3				
MA	MATHEMATICS-I (Calculus and Differential Equations)								
(Common to ALL branches of First Year B.Tech.)									

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about the behavior of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems(L5)

UNIT – I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series– Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and app lications on the above theorem.

UNIT – II: Differential equations of first order and first degree: (10hrs)

Linear differential equations– Bernoulli's equations –Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling– Law of natural growth and decay– Orthogonal trajectories– Electrical circuits.

(10hrs)

UNIT – III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations.

Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem– Total derivative– Chain rule– Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

UNIT – V: Multiple integrals:

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates.

Applications: Finding Areas and Volumes.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018
- 2. B. V. Ramana, Higher Engineering Mathematics, 6th Edition, Tata Mc. Graw Hill Education, 2007.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India, 2011.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14thEdition, Pearson, 2017.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press, 2015.

(10hrs)

(10hrs)

(8 hrs)

I Year I Semester		L	Т	Р	С				
		3	0	0	3				
MATHEMATICS-II (Linear Algebra and Numerical Methods)									
	(Common to ALL branches of First Year B.Tech.)								

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous linear equations – Gauss Elimination method – Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms: (10hrs)

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation.

Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction– Bisection method–Secant method – Method of false position– Iteration method – Newton-Raphson method (One variable and simultaneous equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction– Errors in polynomial interpolation – Finite differences– Forward differences– Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula– Newton's divide difference formula.

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018
- 2. B. V. Ramana, Higher Engineering Mathematics, 6th Edition, Tata McGraw Hill Education, 2007
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage, 2015

Reference Books:

- 1. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata McGraw Hill Education, 4th Edition, 2018
- 2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.

(8 hrs)

(10 hrs)

I Voor I Comostor		L	Т	Р	С				
I Year I Semester		3	0	0	3				
PROGRAMMING FOR PROBLEM SOLVING USING C									

Course Objectives:

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multi-way Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code

Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

AURILIA DE LE CONTRACTORIO DE LA CONTRACTORIO DE LA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Course Outcomes:

After the completion of the course the student should be able :

- To write algorithms and to draw flowcharts for solving problems
- To convert flowcharts/algorithms to C Programs, compile and debug programs
- To use different operators, data types and write programs that use two-way/ multi-way selection
- To select the best loop construct for a given problem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modular reusable code
- To apply File I/O operations

Text Books:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, 1st edition, Cengage, 2019.
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2 edition, Pearson, 2015.

References:

- 1. Computer Fundamentals and Programming, Sumithabha Das, 1st edition, McGraw Hill, 2018.
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, 3rd edition, Pearson, 2015.
- Computer Fundamentals and Programming in C, PradipDey, ManasGhosh, 2nd edition, Oxford, 2013.

I Year I Semester		L	Т	Р	С
		1	0	4	3
	ENGINEERING DRAWING & DESIG	N			

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents and normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes. Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, 53rd edition, Charotar Publications, 2014.
- 2. Engineering Drawing by Agarwal & Agarwal,3rd edition, Tata McGraw Hill Publishers, 2019.

REFERENCE BOOKS:

- 1. Engineering Drawing by K. L. Narayana & P. Kannaiah, Scitech Publishers, 2011.
- 2. Engineering Graphics for Degree by K.C. John, 1st edition, PHI Publishers, 2009.
- 3. Engineering Graphics by PI Varghese, Mc Graw Hill Publishers, 2012.
- 4. Engineering Drawing + AutoCAD K Venugopal, V. Prabhu Raja, 5th edition, New Age, 2011.

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Year I Semester		L	Т	P	С
		0	0	3	1.5
	COMMUNICATIVE ENGLISH LAB				

TOPICS

- **<u>UNIT I:</u>** Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,
- <u>UNIT II:</u> Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)
- **<u>UNIT III:</u>** Stress in compound words, rhythm, intonation, accent neutralization.

<u>UNIT IV:</u> Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions in speaking.

<u>UNIT V:</u> Newspapers reading; Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, Oxford University Press and CIEFL hyderabad.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press, 2003.
- 3. English Phonetics and Phonology-Peter Roach, 4th edition, Cambridge University Press, 2009.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press. 2007.
- 5. English Pronunciation Dictionary- Daniel Jones, 18th edition, Cambridge University Press, 2011.
- English Phonetics for Indian Students- P. Bala Subramanian, 2nd edition, Mac Millan Publications, 2012.

I Year I Semester		L	Т	Р	С				
		0	1	3	1.5				
ELECTRICAL ENGINEERING WORKSHOP									

Course Objectives:

- To demonstrate the usage of measuring equipment
- To train the students in setting up simple wiring circuits
- To impart methods in electrical machine wiring

Any 10 of the following experiments are to be conducted

List of Experiments:

- 1. Study of various electrical tools and symbols.
- 2. Study various types of electrical cables/wires, switches, fuses, fuse carriers, MCB, ELCB, RCCB and MCCB with their specifications and usage.
- 3. Soldering and de-soldering practice.
- 4. Identification of various types of resistors and capacitors and understand the usage digital multimeter.
- 5. Identification of various semiconductor devices.
- 6. Study of Moving Iron, Moving Coil, Electrodynamic and Induction type meters.
- 7. Fluorescent lamp wiring.
- 8. Wiring of lighting circuit using two way control.(stair case wiring)
- 9. Godown wiring/ Tunnel wiring
- 10. Hospital wiring.
- 11. Measurement of voltage, current, power in DC circuit.
- 12. Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and energy meter for calculating Power and Power Factor.
- 13. Measurement of earth resistance.
- 14. Wiring of backup power supply for domestic Installations including inverter, battery and load.
- 15. Troubleshooting of domestic electrical equipment's (tube light and fan).
- 16. Understand the usage of CRO, function generator. & Regulated power supply and Measurement of ac signal parameters using CRO.
- 17. Assembling electronic components on bread board.
- 18. Obtain V-I characteristics of Light Emitting Diode.

Course Outcomes:

After the completion of the course the student should be able to:

- Explain the limitations, tolerances, safety aspects of electrical systems and wiring.
- Select wires/cables and other accessories used in different types of wiring.
- Make simple lighting and power circuits.
- Measure current, voltage and power in a circuit.

I Voor I Comostor		L	Т	Р	С				
I Year I Semester		0	0	3	1.5				
PROGRAMMING FOR PROBLEM SOLVING USING C LAB (ES1202)									

Course Objectives:

- Apply the principles of C language in problem solving.
- To design flowcharts, algorithms and knowing how to debug programs.
- To design & develop of C programs using arrays, strings pointers & functions.
- To review the file operations, preprocessor commands.

Exercise 1:

- Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- Write a C program to display multiple variables.

Exercise 2:

- Write a C program to calculate the distance between the two points.
- Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- Write a C program to convert a string to a long integer.
- Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- Write a C program to calculate the factorial of a given number.

Exercise 4:

- Write a program in C to display the n terms of even natural number and their sum.
- Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- Write a program in C to print all unique elements in an array.
- Write a program in C to separate odd and even integers in separate arrays.
- Write a program in C to sort elements of array in ascending order.

Exercise 6:

- Write a program in C for multiplication of two square Matrices.
- Write a program in C to find transpose of a given matrix.

Exercise 7:

- Write a program in C to search an element in a row wise and column wise sorted matrix.
- Write a program in C to print individual characters of string in reverse order.

ALTING STREET

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Exercise 8:

- Write a program in C to compare two strings without using string library functions.
- Write a program in C to copy one string to another string.

Exercise 9:

- Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- Write a program in C to add two numbers using pointers.

Exercise 11:

- Write a program in C to add numbers using call by reference.
- Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- Write a program in C to swap elements using call by reference.
- Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- Write a program in C to show how a function returning pointer.
- Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- Write a program in C to check whether a number is a prime number or not using the function.
- Write a program in C to get the largest element of an array using the function.

Exercise 16:

- Write a program in C to append multiple lines at the end of a text file.
- Write a program in C to copy a file in another name.
- Write a program in C to remove a file from the disk.

Course Outcomes:

After the completion of the course the student should be able to:

- Gains Knowledge on various concepts of a C language.
- Draw flowcharts and write algorithms.
- Design and development of C problem solving skills.
- Design and develop modular programming skills.
- Trace and debug a program

		L	Τ	Р	С
I Year II Semester		3	0	0	3
MATI	IEMATICS-III(Vector Calculus, Transform	s and]	PDE)		

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes (L3)

UNIT –I: Vector calculus:

Vector Differentiation: Gradient-Directional derivative - Divergence-Curl-Scalar Potential

Vector Integration: Line integral – Work done – Area– Surface and volume integrals – Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and problems on above theorems.

UNIT -II: Laplace Transforms:

Laplace transforms – Definition and Laplace transforms of some certain functions– Shifting theorems – Transforms of derivatives and integrals – Unit step function –Dirac's delta functionPeriodic function – Inverse Laplace transforms– Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT –III: Fourier series and Fourier Transforms: (10 hrs) Fourier Series: Introduction– Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions –Change of interval– Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties (article-22.5 in text book-1)– inverse transforms – Convolution theorem (without proof) – Finite Fourier transforms.

(**10 hrs**)

(**10 hrs**)

UNIT -IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT – V: Second order PDE and Applications:

Second order PDE: Solutions of linear partial differential equations with constant coefficients –Non-homogeneous term of the type e^{ax+by} , sin(ax+by), cos(ax+by), $x^m y^n$.

Applications of PDE: Method of separation of Variables– Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers, 2018.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata McGraw Hill Education. **Reference Books:**
 - 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India. 2015.
 - 2. Dean. G. Duffy, Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press, 2010.
 - 3. Peter O' Neil, Advanced Engineering Mathematics, 7th edition, Cengage, 2011..
 - 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press, 2015.

(8 hrs)

(10 hrs)

I Year II Semester		L	Т	Р	С
I Year II Semester		3	0	0	3
	APPLIED PHYSICS				

(For All Circuital Branches like ECE, EEE, CSE etc)

Unit-I: Wave Optics

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- > **Identify** engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- > Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action - Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture - Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- > Understand the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)

8hrs

12hrs

- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

Unit III: Quantum Mechanics, Free Electron Theory and Band theory10hrsQuantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significanceand properties of wave function – Schrodinger's time independent and dependent wave equations–Particle in a one-dimensional infinite potential well.Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)-E vs K diagram - V vs K diagram - effective mass of electron – Classification of crystalline solids–concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter (L2)
- > **Understand** the significance of wave function (L2)
- > Interpret the concepts of classical and quantum free electron theories (L2)
- **Explain** the importance of K-P model
- Classify the materials based on band theory (L2)
- > Apply the concept of effective mass of electron (L3)

Unit-IV: Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation- Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials-Eddy currents- Engineering applications.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic data storage devices (L3)

8hrs

Unit – V: Semiconductors and Superconductors 10hrs

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's

equation- Hall effect – Hall coefficient – Applications of Hall effect.

Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs

– High T_c superconductors – Applications of superconductors.

Unit Outcomes:

The students will be able to

- Classify the energy bands of semiconductors (L2)
- > Interpret the direct and indirect band gap semiconductors (L2)
- > Identify the type of semiconductor using Hall effect (L2)
- > Identify applications of semiconductors in electronic devices (L2)
- Classify superconductors based on Meissner's effect (L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

- 1. M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"- S.Chand Publications, 11th Edition 2019.
- 2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, 1st edition, Oxford press, 2015.
- 3. Applied Physics by P.K.Palanisamy 3rd edition, SciTech publications, 2013.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, 10th edition, John Wiley &Sons, 2013.
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers, 2009.
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", 1st edition, Pearson Education, 2018.
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, 1st edition, University Press, 2010.
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, 3rd edition, Mc Graw Hill, 2003.
- B.K. Pandey and S. Chaturvedi, Engineering Physics, 1st edition, Cengage Learning, 2013.

I Year II Semester		L	Т	Р	С	
		3	0	0	3	
DATA STRUCTURES THROUGH C						

Preamble:

This course is core subject developed to help the student understand the data structure principles used in power systems, machines and control systems. This subject covers linear data structures, linked lists, trees, graphs, searching and sorting.

Course Objectives:

- •Operations on linear data structures and their applications.
- •The various operations on linked lists.
- •The basic concepts of Trees, Traversal methods and operations.
- •Concepts of implementing graphs and its relevant algorithms.
- •Sorting and searching algorithms.

Unit-1: Linear Data Structures: Arrays, Stacks and Queues

Data Structures -Operations-Abstract Data Types-Complexity of Algorithms-Time and Space-Arrays-Representation of Arrays-Linear Arrays-Insertion–Deletion and Traversal of a Linear Array-Array as an Abstract Data Type-Multi-Dimensional arrays-Strings-String Operations-Storing Strings-String as an Abstract Data Type

Stack -Array Representation of Stack-Stack Abstract Data Type-Applications of Stacks: Prefix-Infix and Postfix Arithmetic Expressions-Conversion-Evaluation of Postfix Expressions-Recursion-Towers of Hanoi-Queues-Definition-Array Representation of Queue-The Queue Abstract Data Type-Circular Queues-Dequeues-Priority Queues.

Unit-II: Linked Lists

Pointers-Pointer Arrays-Linked Lists-Node Representation-Single Linked List-Traversing and Searching a Single Linked List-Insertion into and Deletion from a Single Linked List-Header Linked Lists-Circularly Linked Lists-Doubly Linked Lists-Linked Stacks and Queues-Polynomials-Polynomial Representation-Sparse Matrices.

Unit-III: Trees

Terminology-Representation of Trees-Binary Trees-Properties of Binary Trees-Binary Tree Representations-Binary Tree Traversal-Preorder-Inorder and Postorder Traversal-Threads-Thread Binary Trees-Balanced Binary Trees-Heaps-Max Heap-Insertion into and Deletion from a Max Heap-Binary Search Trees-Searching-Insertion and Deletion from a Binary Search Tree-Height of Binary Search Tree, m-way Search Trees, B-Trees.

Unit-IV: Graphs

Graph Theory Terminology-Graph Representation-Graph Operations-Depth First Search-Breadth First Search-Connected Components-Spanning Trees-Biconnected Components-Minimum Cost Spanning Trees-Kruskal's Algorithm-Prism's Algorithm-Shortest Paths-Transitive Closure-All-Pairs Shortest Path-Warshall's Algorithm.

Unit-V: Searching and Sorting

Searching -Linear Search-Binary Search-Fibonacci Search-Hashing-Sorting-Definition-Bubble Sort-Insertion sort-Selection Sort-Quick Sort-Merging-Merge Sort-Iterative and Recursive Merge Sort-Shell Sort-Radix Sort-Heap Sort.

Course Outcomes:

After the completion of the course the student should be able to:

- data structures concepts with arrays, stacks, queues.
- linked lists for stacks, queues and for other applications.
- traversal methods in the Trees.
- various algorithms available for the graphs.
- sorting and searching in the data ret retrival applications.

Text Books:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan Anderson Freed, Universities Press Pvt. Ltd.
- 2. Data Structures with C, Seymour Lipschutz, Schaum's Outlines, Tata McGraw Hill.

I Year II Semester		L	Τ	Р	С	
		3	0	0	3	
ELECTRICAL CIRCUIT ANALYSIS -I						

Preamble:

This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes single phase circuits, magnetic circuits, network theorems, transient analysis and network topology.

Course Objectives:

- To study the concepts of passive elements, types of sources and various network reduction techniques.
- To understand the applications of network topology to electrical circuits.
- To study the concept of magnetic coupled circuit.
- To understand the behavior of RLC networks for sinusoidal excitations.
- To study the performance of R-L, R-C and R-L-C circuits with variation of one of the parameters and to understand the concept of resonance.
- To understand the applications of network theorems for analysis of electrical networks.

UNIT-I

Introduction to Electrical Circuits

Basic Concepts of passive elements of R, L, C and their V-I relations, Sources (dependent and independent), Kirchhoff's laws, Network reduction techniques (series, parallel, series - parallel, star-to-delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh analysis to DC networks with dependent and independent voltage and current sources., node and mesh analysis.

UNIT-II

Magnetic Circuits

Basic definition of MMF, flux and reluctance, analogy between electrical and magnetic circuits, Faraday's laws of electromagnetic induction – concept of self and mutual inductance, Dot convention – coefficient of coupling and composite magnetic circuit, analysis of series and parallel magnetic circuits.

UNIT-III

Single Phase A.C Systems

Periodic waveforms (determination of rms, average value and form factor), concept of phasor, phase angle and phase difference – waveforms and phasor diagrams for lagging, leading networks, complex and polar forms of representations. node and mesh analysis.

Steady state analysis of R, L and C circuits, power factor and its significance, real, reactive and apparent power, waveform of instantaneous power and complex power.

UNIT-IV

Resonance - Locus Diagrams

series and parallel resonance, selectively band width and Quality factor, locus diagram- RL, RC, RLC with R, L and C variables.

UNIT-V

Network theorems (DC & AC Excitations)

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem and compensation theorem.

Course Outcomes:

After the completion of the course the student should be able to:

- Various electrical networks in presence of active and passive elements.
- Electrical networks with network topology concepts.
- Any magnetic circuit with various dot conventions.
- Any R, L, C network with sinusoidal excitation.
- Any R, L, network with variation of any one of the parameters i.e R, L, C and f.
- Electrical networks by using principles of network theorems.

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E. Kemmerley, 6th edition McGraw Hill Company, 2012.
- 2. Network Analysis: Van Valkenburg; Prentice-3rd edition, Hall of India Private Ltd, 2015.

Reference Books:

- 1. Fundamentals of Electrical Circuits by Charles K. Alexander and Mathew N.O.Sadiku, 5th edition, McGraw Hill Education (India), 2013.
- 2. Linear Circuit Analysis by De Carlo, Lin, 2nd edition, Oxford publications, 2001.
- 3. Electric Circuits (Schaum's outlines) by Mahmood Nahvi & Joseph Edminister, Adapted by KumaRao, 5th Edition McGraw Hill, 2017.
- 4. Electric Circuits by David A. Bell, 7th edition, Oxford publications, 2009.
- 5. Introductory Circuit Analysis by Robert L Boylestad, 13th edition, Pearson, 2015
- Circuit Theory (Analysis and Synthesis) by A. Chakrabarthi, 7th edition, DhanpatRai&Co., 2018.

I Veen II Comester		L	Т	Р	С
I Year II Semester		3	0	0	3
BASIC CIVIL AND MECHANICAL ENGINEERING					

Preamble:

I Year II Semester		L	Т	Р	С	
		0	0	3	1.5	
APPLIED PHYSIC LAB						

(For All Circuital Branches like CSE, ECE, EEE etc.)

(Any 10 of the following listed experiments)

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedge method.
- 2. Determination of radius of curvature of a given plano convex lens by Newton's rings.
- 3. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of the prism.
- 5. Determination of dielectric constant using charging and discharging method.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffraction grating.
- 9. Estimation of Planck's constant using photoelectric effect.
- 10. Determination of the resistivity of semiconductor by four probe method.
- 11. To determine the energy gap of a semiconductor using p-n junction diode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect .
- 14. Measurement of resistance of a semiconductor with varying temperature.
- 15. Resistivity of a Superconductor using four probe method & Meissner effect.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

I Year II Semester		L	Т	P	С
		0	0	3	1.5
BASIC CIVIL AND MECHANICAL ENGINEERING LAB					

Preamble:

I Veen II Comerten		L	Т	Р	С
I Year II Semester		0	0	3	1.5
	DATA STRUCTURES THROUGH C LA	AB			

Any 10 of the following experiments are to be conducted

Course Objectives:

- To develop skills to design and analyze simple linear and non linear data structures.
- To strengthen the ability to the students to identify and apply the suitable data structure for the given real world problem.
- To gain knowledge in practical applications of data structures.

List of Experiments:

- 1. Implement operations on Strings.
- 2. Implement basic operations on Stacks.
- 3. Implement basic operations on Queue.
- 4. Implement basic operations on Circular Queue.
- 5. Implement multi stack in a single array.
- 6. Implement List data structure using i) array ii) singly linked list.
- 7. Implement basic operations on doubly linked list.
- 8. Implement basic operations (insertion, deletion, search, find min and find max) on Binary Search trees.
- 9. Implementation of Heaps.
- 10. Implementation of Breadth First Search Techniques.
- 11. Implementation of Depth First Search Techniques.
- 12. Implementation of Prim's algorithm.
- 13. Implementation of Kruskal's Algorithm.
- 14. Implementation of Linear search.
- 15. Implementation of Fibanocci search.
- 16. Implementation of Merge sort.
- 17. Implementation of Quick sort.

Course Outcomes:

After the completion of the course the student should be able to:

- Be able to design and analyze the time and space efficiency of the data structure.
- Be capable to identity the appropriate data structure for given problem.
- Have practical knowledge on the applications of data structures.

I Year II Semester		L	Т	Р	С	
		2	0	0	0	
CONSTITUTION OF INDIA						

Preamble:

Course Objectives:

- > To Enable the student to understand the importance of constitution
- > To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- > To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions;

Learning outcomes:-After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organization, Structure and Functions

Learning outcomes:-After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities -Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organization

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, 12th edition Prentice Hall of India Pvt. Ltd.. New Delhi 2011.
- 2. Subash Kashyap, Indian Constitution, 2nd edition, National Book Trust, 2011.
- 3. J.A. Siwach, Dynamics of Indian Government & Politics, 2nd edition, Sterling Pub Private Ltd .,1990.
- 4. D.C. Gupta, Indian Government and Politics, 8th edition, Vikas Publishing House Pvt Ltd., 2015.
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication), 2015.
- 6. J.C. Johari, Indian Government and Politics Hans, 13th edition, Shoban Lal & Co.2012.
- 7. J. Raj IndianGovernment and Politics, 1st edition, SAGE Texts Publication, 2008.
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, 3rd edition, Lexis Nexis Publications, 2008.

9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government i.e., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- > Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission